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ABSTRACT

In the context of visual signal analysis for media adapiattbis paper presents a stochastic method for segmentztion
motion vector fields in compressed videos. The video seqenanalysed and partitioned into temporally associated,
motion-semantic regions by three analysis steps. The biobton based reliability analysis assesses the reltgiglktent

of each encoded displacement vector. Upon this measurg amanitial partition is approximated by the region dis-
placement prediction. The subsequent relaxation proessptimises the partition shape, coverage, and locatiomguke
stochastic motion coherenayodel and the second-order random field based contour smesxthThe visually convincing
results are demonstrated from the standard sequences.

Keywords: Compressed video analysis for media adaptation, Stochastion segmentation, Stochastic object tracking

1. INTRODUCTION

The past years have witnessed the growing demands for nedigntlata at different forms, qualities, and charactessti
This is due to the expanding range of terminal device caiglsibs well as usage situations and preferences. Partigirl

the video messaging scenatiche future services require video adaptation to effegtigehle with an increasing number

of terminal classes, configurations, and usage contextsruntimited system resource. However, a success of the video
adaptation strongly depends on the comprehensibility efatiapted video presentations perceived by end users. This
prerequisite is naturally fulfilled by incorporating thedeb content analysis, such that the syntactic and semad#o v
content is retrieved and employed in the video adaptatidarass possible.

In the addressed context, this contribution presents tsgatiement field analysis and segmentation method for the
compressed video sequence. This work extends the initiysis model for the segmentation of displacement field se-
gquence into motion-coherent regions, and the correspgreinporal association (i.e., tracking) of the inter-franegions.
The method assesses the reliability extent of the displanenectors by applying the global motion based motion co-
herency analysis. This process ensures that only religgidadtement vectors shall be utilised in the segmentaBased
on this result, the first displacement field is segmentedyusisingle-field optimisation methdd The algorithm estimates
a set of region motion parameters, and projects the curegtitipn to the subsequent frame. Through this processjgtro
region constellation of the next frame is initialised usihg current segmentation result. The stochastic relaxati@pts
the predicted partition based on new displacement fielisitat As such, the final partition shall exhibit the stédtil
optimality in terms of motion coherency and contour smoe#® This projection and relaxation procedure is iterated f
the subsequent frames until the end of sequence. It is niod¢dhe outlined video analysis method is suitable for awide
analysis scenario constrained by low computational coxiyland no-user interactioh.
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A number of methods for video segmentation and tracking ypegsent in the literature. As displacement fields from
the compressed videos do not necessarily obey true semamithe captured scenes, arrays of confidence measures
are usually estimated in the preprocessing‘stiyat is followed by field classification or segmentation, guasitition
refinement: % A number of statistical approaches gain more and more pdputhie to robustness to uncertainty of the
acquired video data® Further literature in video segmentation can be found in Ref0.

On video tracking, most techniques require an initial psscelecting appropriate visual featdte’¥® that is followed
by analysis of object contout$;'* tracked edge¥’ or, most recently, region motion trajectol¥. A fusion of multiple
sources such as motion and color was reported as a robusestginn-tracking solutioh’  Since high-level visual
semantics perceived by humans are difficult to analyse atvdat)xsolely by machine, another important research track
applies cues from human-computer interaction as additamalysis inputs to the segmentation and tracking algarith

The paper is organised as follows. Sect. 2 introduces irapbtérminologies for the model and algorithm derivation.
Sect. 3 presents the basis analysis modelsthehastic motion coherecgect. 4 discusses the optimisation algorithm that
applies the global motion-based reliability assessmentyell as the partition projection and relaxation methodctSe
presents the experimental results. Sect. 6 concludes per.pa

2. NOMENCLATURE

X a two-dimensional (2-D) Cartesian displacement vectordioate on the field lattice structure
V(X) a 2-D displacement vector at coordinate

V'(x,k) a2-Dmodelled displacement vector at coordinatgivenk-th displacement model

v(x|/n, k) a 2-D displacement vector predictor given neighbdur) andk-th displacement model

Uy, the k-th vector membership set of regign, i.e., the partitioning result

T the k-th 2-D displacement model of regiah,

Vi, the k-th 2-D velocity (first-order derivative of displacementddel of regionyy,

Ay thek-th 2-D acceleration (second-order derivative of disptaeet) model of regiony,
Sk, the projection estimation of theth region at timer;

3. STOCHASTIC MOTION COHERENCY MODEL

The basis modélevaluates the probability densiBr(Q|V) of partition Q, consisting of\ regions, given an observed
displacement field’. Through the use of Bayes rule anthximum a posteriorfMAP) estimation'? the probability
Pr(Q|V) can be expressed by the multiplication of local/region protioherency likelihoo®r(V|Q) and thea priori re-
gion boundary densitPr(Q):

Pr(QV) o Pr(V|Q) - Pr(Q) = I, (V|Q) - 5 (V|Q) - 11, (Q), 1)
N -~ RN v
Likelihood Priori

which can be written in a comprehensive form as:

A A
Pr(9Q|V) % - exp l—z {Gk : Z Ay (X, k)}] - exp l—z {Hk : Z Ag(X, k)}] -exp [-NBB —/\/’CC];

k=1 Xew;, k=1 Xewy > A Priori Density

~

Local Motio?t Coherency Region Moti‘o’n Coherency ( )
2
The likelihood assesses the motion coherency probability@levels. At the neighborhood level the local smoothngss
ensured through thA, (x, k) observation (cf. Eq. (4)) at each vector coordinasnd thek-th local coefficieniG),. At
the region level, the model guarantees that each vectoofitset assigned region model through the region incoherence
Ag(x, k) (cf. Eg. (11)) and thé-th region coefficientd,.. The affine displacement modeIT,. of the region¥,, k =
1,..., X describes a displacement vector at the coordirdig v’ (x, k) = MyXx + tz, with M, € R2*2 and t;, € R?
being the region model parameters. The third multiplicamtesents tha priori density of region borders. This function
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>
(a) The second-order neighbourhood syst&x) (b) The analysis of predicto¥(x|n, k) via dis-
of principal displacement coordinateplotted in placement vector justifies that rectifies the spa-
the context ofrelative shift vectorr based on tial deviance betweewn(x) and neighbouv(n) us-
neighbour coordinata ing thek-th region modeT . (cf. (6)-(9))

Figure 1. lllustration of the second-order neighbourhood systemtaadnalysis of displacement vector predictor

measures the partition state by counting a number of vectios pt the region borderd/s in the horizontal or vertical
directions and\V¢ for the diagonal withB andC' being the corresponding coefficients. The paramgtés a common
normalisation constant of these three multiplicands.

3.1. TheLikelihood

The first multiplicandII,, (V|Q) defines thdocal motion coherencypf the partitionQ with respect to the displacement
field V. The coherency estimation is proceeded within the secodermeighbourhood syste@(x) or the eight nearest
neighbours of the Gibbs-Markov random figld! 22 (cf. Fig. 1(a)),

A
Ha(V‘Q) = Ziexp [_Z {Gk ) Z Aa(xﬁ k)}] 3 (3)

k= Xew,

with Z, being a normalisation constant aiq, (x, k) a local incoherence functiomdicating the median of prediction
errorsd(x, n, k) between a principal displacement vecigx) and its predictor§(x|n, k). It is observable that the local
motion coherency favours small prediction errors beingneged by the local incoherence function in the neighbour-
hood. That means, the lower the local incoherence, the hitledocal motion coherency likelihood shall be. The local
incoherence functiof\, (x, k) is expressed as:

A (X, k) = median ne gx)nw, {6(x, n, k)}, 4)

with G(x) N ¥, being a coordinate set in the regidn, that overlaps neighbourhood systéitx) of the principal dis-
placement vectov(x). The prediction errof(x, n, k) is calculated at each vector component in relation to thdiptar
v(x|n, k) by

5(x,n, k) = |vx(X) — dx (XN, k)| + |vy (X) — dy (X|n, k)| (5)
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The predictof/(x|n, k) of the principal displacement vectofx) is calculated based on the neighbour displacement vector
v(n), whose coordinate is related to the principal coordinatey a relative shift vector. Fig. 1(a) depicts that the
neighbour coordinata can be written in terms of its related shift vectoe= x — n. In the second-order neighbourhood
system, eight shift vectorscan be calculated in advance based on the position conistelt# the eight neighbouns in
relation to the principal coordinate

A calculation of the prediction errax(x, n, k) in (5) requires the definition of predictéfx|n, k). For simplicity, we
introduce an intermediate notionaiplacement vector justifierthat justifies the interpretation of neighbour displacemen
vectorv(n) at the principal coordinateusing thek-th region model (cf. Fig. 1(b)), i.e.,

V(x|n, k) = v(n) + u. (6)

Upon the notion of in Fig. 1(a), the displacement vector justifiecan be formulated in conjunction with ttketh region
model as:

u=Vv(xk) —v(nk)=v(n+r,k)—v(nk). (7

Since the affine model is linear, we obtain

u=Mg(n+r)+ty — (Mgn+t;) = Mgr, (8)

that can be substituted to Eq. (6):

v(x|n, k) = v(n) + Myr. 9

This derivation demonstrates that the prediétotn, k) can be calculated from the model parameter maitjx as well
as a neighbour displacement vectgn) and a vector that depends on the neighbourhood constellation, prowided
G(X) Ny, (cf. EQ. (4)). This conclusion enables the realisation o&lancoherencé\, (x, k) based on the neighbourhood
observation and the chosen random-field neighbourhoodrsyst

In Eg. (1), the local motion coherency likelihood is regidad by the second multiplicands(V|Q). The latter
probability defines the likelihood assessing how well eaispldcement vector fits to the assigned region model, thus
termed as thesgion motion coherency

A
(V|Q) = Z%exp [—Z {Hk S As(x, k)H ; (10)

k=1 XeWw,

whereZ 3 denotes a normalisation constant aigl(x, k) theregion incoherence function

As(x, ) = lox (x) = v'x (%, k)| + oy (x) = 'y (%, k). (11)

This function accumulates the absolute differences betvitke observed/(x) and the modelled displacement vector
V' (X, k) for each vector component. Following the formulations in &) and (10), the likelihood can be written as:

A A
Pr(V|Q) = Ziexp [—Z{Gk- > Aa(x,k)H -Ziﬁexp [—Z{Hk- > Aﬁ(x,k)H, (12)

k=1 Xe\pk k=1 Xe\pk

~ RN /

~" ~"

Local Motion Coherency Region Motion Coherency

Itis demonstrated that the complete notion of the affine omtbherency likelihoo®r(V|Q) consists of two parts: the lo-
cal and the region motion coherency. Both analysis termg thtzeexponential decay adopted from the Gibbs distribgtion
which incorporate the cost or penalty formulations in thighkourhood system of Markov random field and the region
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membership fit. At the parameters of the exponential funstithe model specifies the incoherence functidn$x, k)

and Ag(x, k) enumerating the degree of vector inconsistency in the Ioegjhbourhood and the observed regions, re-
spectively. These incoherence functions are evaluateslbas) affine models, corresponding foobserved regions of
partition Q.

3.2. The A-Priori Region Boundary Density

The last term in Eq. (1) is tha priori density of the region shapes or boundaries given an obsparéiion Q. The model
chooses the density that favours regions of compact shayplesnaooth boundaries akin to most physical objébtg It
assigns a large probability to a partition that comprisggores of this desired property. As such, the priori is mastelhy
a subclass of the 2-D Gibbs-Markov random field in the form of

1,(Q) = - exp [-H(Q)] = - exp[-NB ~ NeCl, a3)
with Z. being a normalisation constant and the eneify2) assessing the state of partiti@ghby counting a number of
inhomogeneous cliques or displacement vector pairs aetfiem borders (being assigned with different region Igbdts
the second-order random field, the energy is estimated lwasttte number of inhomogeneous cliques at eight neighbours
of all displacement vectors on the field. As inhomogeneoigaies with diagonal or horizontal/vertical configurations
influence different degrees of boundary roughness, the hspéeifies weights to the counts in both cases independently
i.e., B to the number of horizontal or vertical border paitég) andC to the diagonal ones\().

4. DISPLACEMENT FIELD SEQUENCE SEGMENTATION PRINCIPLE

This section presents the video sequence segmentatiaigeibased on the aforementioned stochastic motion cobgre
model. The vector reliability assessment measures thedsorde extent of each coded displacement vector on the field. |
forms a partition analysis foundation. The partition of tinst frame is estimated based on the single-frame optiisat
technique. The subsequent frames are estimated and refinex Iprojection and relaxation scheme until the end of
video sequence. Note that the latter process insures tabtiained partitions are optimal according to the diffefietd
statistics. Fig. 2 summarises the overall segmentatiomditioning principle.

4.1. Vector Reliability Assessment

The method applies the local motion coherency, i.e., therfitdtiplicand of Eq. (12), to assess the reliability extehthe
displacement vectors. The local smoothness with respabetglobal motion (i.e., considering the regibn= A = 1)

is investigated. As such, the displacement vectors whielsarooth according to the affine-based spatial variance (cf.
Eq. (9)) are considered reliable. The reliability measure vector at coordinateis expressed as:

w(X) = Zi exp [— (f;vi <A (X, )\)] . (14)
a Aa(X,A)

In order that this measure is statistically justified, cegfit G, of the local incoherenca,, (x, A) is chosen at the re-
ciprocal of the normalised standard deviation, being dated fromA\y, local incoherence observations. The parameter
Z, is a constant ensuring that measur) lies between 0 and 1. The displacement vectors at the framgdeisoare not
considered in this process.

4.2. Partition Projection: Region Displacement Prediction

The partition projection algorithm enables the segmeurtatif the displacement field sequence, provided the partitio
of the first displacement field (using the single-frame ofstatior?). The method initialises the subsequent partition by
approximating the label projection upon each displacemector. First, let us consider the case that a label is |daate

a 1-D spatial field that is being displaced in the continutiue domain. Assuming acceleratiafir) is a linear function

of velocity,a(r) = m — n - v(7), the label projectior(7) can conveniently be calculated from:
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r( Displacement Vector Field Parsing H

1. Displacement Vector Field 2. Partitioning only the First Field by
Reliability Assessment Pr(Q]V) Maximisation

==
Reliability N
Measure Initial
Arrays Partition
P e e e e e e B e e e e e e e e o P s e e P A = ~

| 3. Partition Projection in Multiple lteration for each Region |
1 |
| | 3.1 Model Initialisation: 3.2 Region Projection: 3.3 Model Update: |
[ frame N frame N to frame N+1 frame N+1 |
! |

4, Partition Relaxation Ensuring
Pr(Q|V) Maximisation at frame N+1

¥

5. Progress to Subsequent Frame:
N = N+1

Figure 2. Overall Partitioning Principle

s(r) = //a(T) d’r = / D= e )dr =50+ {T 4 e_n”] , (15)

wheresy denotes the initial projection of the integral. This cagpuiees parameter estimatésandn to properly identify
projection functions(). To overcome this problem, the derivation can be simplifiedifing the second-order approxi-
matior?® which assumes the constant accelerationAs such, Eq. (15) is rewritten by:

1
s(7) ://a(T)dQTN/’Uo-FmT dT:SO+U0T+§m7'2, (16)

wherev, denotes the initial velocity of the integral, asgldenotes the initial projection similarly to Eq. (15). Usitids
result, the projection on a 2-D spatial field in the disctitee domain (according to the frame sampling configuratibn o
the video sequence being analysed) can be derived in ttosvialy.

The projectionS;,; of the k-th region at timer; is based on the affine displacement modig}, at time 7;, where
V(X E,j) = MpjX+1tj,x € ¥, My ; € R272, 1, ; € R? and that of the two previous frames at timgs,7;_»,
Ti,j—1 andTy ;_», respectively. The displacement modg|;, is estimated using the weighted linear regression upon the
membership functio;,. Assuming accelerations are constantAqr; = Ay j_1 = Ay j_2, the k-th region projection
estimateS;, ; for the region membershi; attimer; is estimated by (cf. Eq. (16)):

1 Tj — Tj—1 2

Sk,j A Skj-1 + Vi1 (1) = Tjm1) + 5 (Thjo1 = Thj—2) - ( 17
2 Tj—1 — Tj-2
With the constant acceleration &, ;_» = A ;_1, the velocityV;, ;_; in this equation can be identified by
Tj—1 — Tj— T — Tj—
Vijo1 & Vioz + (Thjoz = Thjog) - =225 & Vijoa + (Trjot = Thyoz) - —L—2— (18)

(7j—2 = Tj-3) (Tj1 = 7j2)*

A substitution of Eq. (18) to Eq. (17) yields:
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(€

Figure 3. Reliability assessment and segmentation results fromesegTable Tennisat frames 4, 7 and 10 (This figure contains color
information best viewed by color printout.)

R (19)

3
Sk,j ~ Skj-1 + Vij—2 - (Tj—1 — Tj—2) + 2 (Thj—1 = Trj—2) - (
Tj,I — Tj,Q .

~

~~
projection vector estimate

This formulation allows the projection of labels in tketh region from the previous frame at timg_; to the current
frame at timer; by using theprojection vector estimatand the projection result at the previous frame (8g,;—1). The
displacement moddl; ;, of the current frame is updated after the projection usiegakighted linear regression upon the
membership functiod . Through the iteratioks = 1, ..., A, the entire partition at time; is initialised.

4.3. Partition Relaxation

The projected partition is refined to ensure the maximal abdly Pr(Q|)) based on the new given motion figild The
algorithm evaluates the probabilifyr(Q|V) by taking the negative logarithm of (2). This leads to the M#&RBt function:

>

—log{Pr(QV)} o > [Gk- > AL k) + Hy - Y As(x, k)} + NBB+NoC + log(Z) . (20)

k=1 XeWwy, Xewy,

N PN ., Contour Roughness  Constant

~~

Local Heterogeneity Region Heterogeneity
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Figure 4. Reliability assessment and segmentation results fromesegliancastet at frames 4, 7 and 10 (This figure contains color
information best viewed by color printout.)

The optimal partitiorQ, that maximises’r(Q|V) in terms of the local and region motion coherency and regmmbdary
smoothness, shall minimise this cost function. To arrivhiatoptimality, the algorithm investigates at every regimrder

if a label substitution may decrease this MAP cost functiéh.each vector, the substitution label set is gathered from
the second-order neighbourhood system (i.e., 8 neareghl®irs) plus a new label. The latter case enables the new
object detection on the new displacement field. If two or nsarestitution tests reduce the MAP cost function, only the
configuration which leads to the highest function reducsball take place. This region reassignment scheme proaeeds
multiple raster-scan iterations until the substitutioeslaot decrease the MAP cost, i.e., the optimal partitioausd.

The projection and relaxation scheme in Sect. 4.2 and S&dis depeated for the next frame pairs and until the rest of
the sequence as shown in Fig. 2.

5. EXPERIMENTAL RESULTS

Sequence3able TennisDocumentary about buildings, Lancaster Television (Lated?* andForemanin CIF format
were experimented. This test utilised an MPEG-4 endddesnfigured at a 25-fps frame rate and an IBBP group of
frames. The displacement fields were estimated using axid-q@arch range and a 512-kbps rate control (TM5 algorithm)
Fig. 3, 4, and 5 depict the experimental results from P-tyamés 4, 7 and 10 (cf. Subfig. 3, 4, and 5(a)) of the three test
sequences. Based on the parsed displacement vector fighis wideo test set, the implemented algorithm generated th
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Figure 5. Reliability assessment and segmentation results fromeseglroremanat frames 4, 7 and 10 (This figure contains color
information best viewed by color printout.)

reliability measure arrays corresponding to the vectad ielurces (cf. Subfig. 3, 4, and 5(b)). Blocks of the absoltgerny
color represent the highest confident value, while the aitsoéd for the lowest one. In the segmentation (cf. Subfig, 3,
and 5(c)), a unique color illustrates a tracked region. Nords used at the blocks of unreliable displacement vectors

It is observable that unreliable vectors influenced by nededosignals and/or estimation imprecision of the chosen
coding algorithm were efficiently identified (in a red-colange). These vectors were marked mostly around the arm
in Fig. 3(b), at the left border of the coach in Fig. 4(b), adlwae on the left part of foreman’s face in Fig. 5(b). The
partitioning and tracking algorithm functioned well to eadt the arm in Fig. 3(c), the coach in Fig. 4(c), and the faein
face in Fig. 5(c) out of the background regions. However namy regions were detected at the coach and the sky regions
in Fig. 4, as a single affine model may not efficiently model ptex region motion. The success in temporal association
or tracking is evident from the region color preservatiothatsequence level.

6. CONCLUSION

This paper presents a stochastic method for segmentatittnearking of the displacement field sequences from comedess
videos. Based on the stochastic motion coherency modeljifgacement field sequence is analysed and partitioned
to multiple temporally associated, motion-semantic regiasing the global motion based reliability analysis, ipart
prediction, and stochastic relaxation. The visually caning results were demonstrated from the standard segsience
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