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ABSTRACT

In the context of visual signal analysis for media adaptation, this paper presents a stochastic method for segmentationof
motion vector fields in compressed videos. The video sequence is analysed and partitioned into temporally associated,
motion-semantic regions by three analysis steps. The global motion based reliability analysis assesses the reliability extent
of each encoded displacement vector. Upon this measure array, an initial partition is approximated by the region dis-
placement prediction. The subsequent relaxation procedure optimises the partition shape, coverage, and location using the
stochastic motion coherencymodel and the second-order random field based contour smoothness. The visually convincing
results are demonstrated from the standard sequences.
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1. INTRODUCTION

The past years have witnessed the growing demands for multimedia data at different forms, qualities, and characteristics.
This is due to the expanding range of terminal device capabilities as well as usage situations and preferences. Particularly in
the video messaging scenario,1 the future services require video adaptation to effectively scale with an increasing number
of terminal classes, configurations, and usage contexts under a limited system resource. However, a success of the video
adaptation strongly depends on the comprehensibility of the adapted video presentations perceived by end users. This
prerequisite is naturally fulfilled by incorporating the video content analysis, such that the syntactic and semantic video
content is retrieved and employed in the video adaptation asfar as possible.

In the addressed context, this contribution presents the displacement field analysis and segmentation method for the
compressed video sequence. This work extends the initial analysis model2 for the segmentation of displacement field se-
quence into motion-coherent regions, and the corresponding temporal association (i.e., tracking) of the inter-frameregions.
The method assesses the reliability extent of the displacement vectors by applying the global motion based motion co-
herency analysis. This process ensures that only reliable displacement vectors shall be utilised in the segmentation.Based
on this result, the first displacement field is segmented using a single-field optimisation method.2 The algorithm estimates
a set of region motion parameters, and projects the current partition to the subsequent frame. Through this process, a rough
region constellation of the next frame is initialised usingthe current segmentation result. The stochastic relaxation adapts
the predicted partition based on new displacement field statistics. As such, the final partition shall exhibit the statistical
optimality in terms of motion coherency and contour smoothness. This projection and relaxation procedure is iterated for
the subsequent frames until the end of sequence. It is noted that the outlined video analysis method is suitable for a video
analysis scenario constrained by low computational complexity and no-user interaction.3
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A number of methods for video segmentation and tracking werepresent in the literature. As displacement fields from
the compressed videos do not necessarily obey true semantics on the captured scenes, arrays of confidence measures
are usually estimated in the preprocessing step4 that is followed by field classification or segmentation, andpartition
refinement.5, 6 A number of statistical approaches gain more and more popularity due to robustness to uncertainty of the
acquired video data.7, 8 Further literature in video segmentation can be found in Ref. 9, 10.

On video tracking, most techniques require an initial process selecting appropriate visual features11, 12 that is followed
by analysis of object contours,13, 14 tracked edges,15 or, most recently, region motion trajectory.16 A fusion of multiple
sources such as motion and color was reported as a robust segmentation-tracking solution.17 Since high-level visual
semantics perceived by humans are difficult to analyse and extract solely by machine, another important research track
applies cues from human-computer interaction as additional analysis inputs to the segmentation and tracking algorithm.18

The paper is organised as follows. Sect. 2 introduces important terminologies for the model and algorithm derivation.
Sect. 3 presents the basis analysis model, thestochastic motion coherecy. Sect. 4 discusses the optimisation algorithm that
applies the global motion-based reliability assessment, as well as the partition projection and relaxation method. Sect. 5
presents the experimental results. Sect. 6 concludes the paper.

2. NOMENCLATURE

x a two-dimensional (2-D) Cartesian displacement vector coordinate on the field lattice structure
v(x) a 2-D displacement vector at coordinatex
v’(x; k) a 2-D modelled displacement vector at coordinatex, givenk-th displacement model
v̂(xjn; k) a 2-D displacement vector predictor given neighbourv(n) andk-th displacement model	k thek-th vector membership set of region k, i.e., the partitioning result
Tk thek-th 2-D displacement model of region k
Vk thek-th 2-D velocity (first-order derivative of displacement) model of region k
Ak thek-th 2-D acceleration (second-order derivative of displacement) model of region k
Sk;j the projection estimation of thek-th region at time�j

3. STOCHASTIC MOTION COHERENCY MODEL

The basis model2 evaluates the probability densityPr(QjV) of partitionQ, consisting of� regions, given an observed
displacement fieldV . Through the use of Bayes rule andmaximum a posteriori(MAP) estimation,19 the probabilityPr(QjV) can be expressed by the multiplication of local/region motion coherency likelihoodPr(VjQ) and thea priori re-
gion boundary densityPr(Q):Pr(QjV) / Pr(VjQ) � Pr(Q) = ��(VjQ) � ��(VjQ)| {z }Likelihood ���(Q)| {z }Priori ; (1)

which can be written in a comprehensive form as:Pr(QjV) / 1Z � exp"� �Xk=1(Gk � X
x2	k��(x; k))#| {z }Lo
al Motion Coheren
y � exp"� �Xk=1(Hk � X

x2	k��(x; k))#| {z }Region Motion Coheren
y � exp [�NBB �NCC℄ :| {z }A Priori Density
(2)

The likelihood assesses the motion coherency probability at two levels. At the neighborhood level the local smoothnessis
ensured through the��(x; k) observation (cf. Eq. (4)) at each vector coordinatex and thek-th local coefficientGk. At
the region level, the model guarantees that each vector fits to the assigned region model through the region incoherence��(x; k) (cf. Eq. (11)) and thek-th region coefficientGk. The affine displacement model20 Tk of the region	k; k =1; : : : ; � describes a displacement vector at the coordinatex by v’(x; k) = Mkx + tk, with Mk 2 <2x2 and tk 2 <2
being the region model parameters. The third multiplicand represents thea priori density of region borders. This function
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(a) The second-order neighbourhood systemG(x)
of principal displacement coordinatex plotted in
the context ofrelative shift vectorr based on
neighbour coordinaten

(b) The analysis of predictor̂v(xjn; k) via dis-
placement vector justifieru that rectifies the spa-
tial deviance betweenv(x) and neighbourv(n) us-
ing thek-th region modelTk (cf. (6)-(9))

Figure 1. Illustration of the second-order neighbourhood system andthe analysis of displacement vector predictor

measures the partition state by counting a number of vector pairs at the region borders,NB in the horizontal or vertical
directions andNC for the diagonal withB andC being the corresponding coefficients. The parameterZ is a common
normalisation constant of these three multiplicands.

3.1. The Likelihood

The first multiplicand��(VjQ) defines thelocal motion coherencyof the partitionQ with respect to the displacement
field V . The coherency estimation is proceeded within the second-order neighbourhood systemG(x) or the eight nearest
neighbours of the Gibbs-Markov random field19, 21, 22 (cf. Fig. 1(a)),��(VjQ) = 1Z� exp"� �Xk=1(Gk � X

x2	k��(x; k))# ; (3)

with Z� being a normalisation constant and��(x; k) a local incoherence functionindicating the median of prediction
errorsÆ(x; n; k) between a principal displacement vectorv(x) and its predictorŝv(xjn; k). It is observable that the local
motion coherency favours small prediction errors being estimated by the local incoherence function in the neighbour-
hood. That means, the lower the local incoherence, the higher the local motion coherency likelihood shall be. The local
incoherence function��(x; k) is expressed as:��(x; k) = median n2 G(x)\	k�Æ(x; n; k)�; (4)

with G(x) \ 	k being a coordinate set in the region	k that overlaps neighbourhood systemG(x) of the principal dis-
placement vectorv(x). The prediction errorÆ(x; n; k) is calculated at each vector component in relation to the predictor
v̂(xjn; k) by Æ(x; n; k) = ��vX(x)� v̂X(xjn; k)��+ ��vY (x)� v̂Y (xjn; k)��: (5)
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The predictor̂v(xjn; k) of the principal displacement vectorv(x) is calculated based on the neighbour displacement vector
v(n), whose coordinate is related to the principal coordinatex by a relative shift vectorr. Fig. 1(a) depicts that the
neighbour coordinaten can be written in terms of its related shift vectorr = x � n. In the second-order neighbourhood
system, eight shift vectorsr can be calculated in advance based on the position constellation of the eight neighboursn in
relation to the principal coordinatex.

A calculation of the prediction errorÆ(x; n; k) in (5) requires the definition of predictorv̂(xjn; k). For simplicity, we
introduce an intermediate notion ofdisplacement vector justifieru that justifies the interpretation of neighbour displacement
vectorv(n) at the principal coordinatex using thek-th region model (cf. Fig. 1(b)), i.e.,

v̂(xjn; k) = v(n) + u: (6)

Upon the notion ofr in Fig. 1(a), the displacement vector justifieru can be formulated in conjunction with thek-th region
model as:

u = v’(x; k)� v’(n; k) = v’(n + r; k)� v’(n; k): (7)

Since the affine model is linear, we obtain

u = Mk(n + r) + tk � (Mkn + tk) = Mkr; (8)

that can be substituted to Eq. (6):

v̂(xjn; k) = v(n) + Mkr: (9)

This derivation demonstrates that the predictorv̂(xjn; k) can be calculated from the model parameter matrixMk, as well
as a neighbour displacement vectorv(n) and a vectorr that depends on the neighbourhood constellation, providedn 2G(x)\	k (cf. Eq. (4)). This conclusion enables the realisation of local incoherence��(x; k) based on the neighbourhood
observation and the chosen random-field neighbourhood system.

In Eq. (1), the local motion coherency likelihood is regularised by the second multiplicand��(VjQ). The latter
probability defines the likelihood assessing how well each displacement vector fits to the assigned region model, thus
termed as theregion motion coherency:��(VjQ) = 1Z� exp"� �Xk=1(Hk � X

x2	k��(x; k))# ; (10)

whereZ� denotes a normalisation constant and��(x; k) theregion incoherence function:��(x; k) = jvX(x)� v0X(x; k)j+ jvY (x)� v0Y (x; k)j : (11)

This function accumulates the absolute differences between the observedv(x) and the modelled displacement vector
v’(x; k) for each vector component. Following the formulations in Eq. (3) and (10), the likelihood can be written as:Pr(VjQ) = 1Z� exp"� �Xk=1(Gk � X

x2	k��(x; k))#| {z }Lo
al Motion Coheren
y � 1Z� exp"� �Xk=1(Hk � X
x2	k��(x; k))#| {z }Region Motion Coheren
y ; (12)

It is demonstrated that the complete notion of the affine motion coherency likelihoodPr(VjQ) consists of two parts: the lo-
cal and the region motion coherency. Both analysis terms obey the exponential decay adopted from the Gibbs distributions,
which incorporate the cost or penalty formulations in the neighbourhood system of Markov random field and the region
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membership fit. At the parameters of the exponential functions, the model specifies the incoherence functions��(x; k)
and��(x; k) enumerating the degree of vector inconsistency in the localneighbourhood and the observed regions, re-
spectively. These incoherence functions are evaluated based on� affine models, corresponding to� observed regions of
partitionQ.

3.2. The A-Priori Region Boundary Density

The last term in Eq. (1) is thea priori density of the region shapes or boundaries given an observedpartitionQ. The model
chooses the density that favours regions of compact shapes and smooth boundaries akin to most physical objects.19, 22 It
assigns a large probability to a partition that comprises regions of this desired property. As such, the priori is modelled by
a subclass of the 2-D Gibbs-Markov random field in the form of��(Q) = 1Z� exp [�H(Q)℄ = 1Z� exp [�NBB �NCC℄ ; (13)

with Z� being a normalisation constant and the energyH(Q) assessing the state of partitionQ by counting a number of
inhomogeneous cliques or displacement vector pairs at the region borders (being assigned with different region labels). In
the second-order random field, the energy is estimated basedon the number of inhomogeneous cliques at eight neighbours
of all displacement vectors on the field. As inhomogeneous cliques with diagonal or horizontal/vertical configurations
influence different degrees of boundary roughness, the model specifies weights to the counts in both cases independently,
i.e.,B to the number of horizontal or vertical border pairs (NB) andC to the diagonal ones (NC).

4. DISPLACEMENT FIELD SEQUENCE SEGMENTATION PRINCIPLE

This section presents the video sequence segmentation principle based on the aforementioned stochastic motion coherency
model. The vector reliability assessment measures the confidence extent of each coded displacement vector on the field. It
forms a partition analysis foundation. The partition of thefirst frame is estimated based on the single-frame optimisation
technique. The subsequent frames are estimated and refined by the projection and relaxation scheme until the end of
video sequence. Note that the latter process insures that the obtained partitions are optimal according to the different field
statistics. Fig. 2 summarises the overall segmentation or partitioning principle.

4.1. Vector Reliability Assessment

The method applies the local motion coherency, i.e., the first multiplicand of Eq. (12), to assess the reliability extentof the
displacement vectors. The local smoothness with respect tothe global motion (i.e., considering the regionk = � = 1)
is investigated. As such, the displacement vectors which are smooth according to the affine-based spatial variance (cf.
Eq. (9)) are considered reliable. The reliability measure of the vector at coordinatex is expressed as:w(x) = 1Z� exp"�s N	��2��(x;�) ���(x; �)# : (14)

In order that this measure is statistically justified, coefficientG� of the local incoherence��(x; �) is chosen at the re-
ciprocal of the normalised standard deviation, being calculated fromN	� local incoherence observations. The parameterZ� is a constant ensuring that measurew(x) lies between 0 and 1. The displacement vectors at the frame borders are not
considered in this process.

4.2. Partition Projection: Region Displacement Prediction

The partition projection algorithm enables the segmentation of the displacement field sequence, provided the partition
of the first displacement field (using the single-frame optimisation2). The method initialises the subsequent partition by
approximating the label projection upon each displacementvector. First, let us consider the case that a label is located on
a 1-D spatial field that is being displaced in the continuous-time domain. Assuming accelerationa(�) is a linear function
of velocity,a(�) = m� n � v(�), the label projections(�) can conveniently be calculated from:
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Figure 2. Overall Partitioning Principles(�) = Z Z a(�) d 2� = Z mn (1� e�n� )d� = s0 + mn �� + e�n�n � ; (15)

wheres0 denotes the initial projection of the integral. This case requires parameter estimatesm̂ andn̂ to properly identify
projection functions(�). To overcome this problem, the derivation can be simplified by using the second-order approxi-
mation23 which assumes the constant acceleration,m. As such, Eq. (15) is rewritten by:s(�) = Z Z a(�) d 2� � Z v0 +m� d� = s0 + v0� + 12m�2; (16)

wherev0 denotes the initial velocity of the integral, ands0 denotes the initial projection similarly to Eq. (15). Usingthis
result, the projection on a 2-D spatial field in the discrete-time domain (according to the frame sampling configuration of
the video sequence being analysed) can be derived in the following.

The projectionSk;j of the k-th region at time�j is based on the affine displacement modelTj;k at time�j , where
v’(x; k; j) = Mk;jx + tk;j ; x 2 	k;Mk;j 2 <2x2, tk;j 2 <2 and that of the two previous frames at times�j�1; �j�2,
Tk;j�1 andTk;j�2, respectively. The displacement modelTj;k is estimated using the weighted linear regression upon the
membership function	k. Assuming accelerations are constant, orAk;j = Ak;j�1 = Ak;j�2, thek-th region projection
estimateSk;j for the region membership	k at time�j is estimated by (cf. Eq. (16)):

Sk;j � Sk;j�1 + Vk;j�1 � (�j � �j�1) + 12 (Tk;j�1 � Tk;j�2) � ( �j � �j�1�j�1 � �j�2 )2: (17)

With the constant acceleration orAk;j�2 = Ak;j�1, the velocityVk;j�1 in this equation can be identified by

Vk;j�1 � Vk;j�2 + (Tk;j�2 � Tk;j�3) � �j�1 � �j�2(�j�2 � �j�3)2 � Vk;j�2 + (Tk;j�1 � Tk;j�2) � �j � �j�1(�j�1 � �j�2)2 : (18)

A substitution of Eq. (18) to Eq. (17) yields:
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Figure 3. Reliability assessment and segmentation results from sequenceTable Tennisat frames 4, 7 and 10 (This figure contains color
information best viewed by color printout.)

Sk;j � Sk;j�1 + Vk;j�2 � (�j�1 � �j�2) + 32 (Tk;j�1 � Tk;j�2) � ( �j � �j�1�j�1 � �j�2 )2| {z }proje
tion ve
tor estimate : (19)

This formulation allows the projection of labels in thek-th region from the previous frame at time�j�1 to the current
frame at time�j by using theprojection vector estimateand the projection result at the previous frame (i.e.,Sk;j�1). The
displacement modelTj;k of the current frame is updated after the projection using the weighted linear regression upon the
membership function	k. Through the iterationk = 1; : : : ; �, the entire partition at time�j is initialised.

4.3. Partition Relaxation
The projected partition is refined to ensure the maximal probability Pr(QjV) based on the new given motion fieldV . The
algorithm evaluates the probabilityPr(QjV) by taking the negative logarithm of (2). This leads to the MAPcost function:� logfPr(QjV)g / �Xk=1 �Gk � X

x2	k��(x; k)| {z }Lo
al Heterogeneity +Hk � X
x2	k��(x; k)| {z }Region Heterogeneity �+ NBB +NCC| {z }Contour Roughness+ log(Z)| {z }Constant : (20)
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Figure 4. Reliability assessment and segmentation results from sequenceLancaster24 at frames 4, 7 and 10 (This figure contains color
information best viewed by color printout.)

The optimal partitionQ, that maximisesPr(QjV) in terms of the local and region motion coherency and region boundary
smoothness, shall minimise this cost function. To arrive atthis optimality, the algorithm investigates at every region border
if a label substitution may decrease this MAP cost function.At each vector, the substitution label set is gathered from
the second-order neighbourhood system (i.e., 8 nearest neighbours) plus a new label. The latter case enables the new
object detection on the new displacement field. If two or moresubstitution tests reduce the MAP cost function, only the
configuration which leads to the highest function reductionshall take place. This region reassignment scheme proceedsin
multiple raster-scan iterations until the substitution does not decrease the MAP cost, i.e., the optimal partition is found.

The projection and relaxation scheme in Sect. 4.2 and Sect. 4.3 is repeated for the next frame pairs and until the rest of
the sequence as shown in Fig. 2.

5. EXPERIMENTAL RESULTS

SequencesTable Tennis, Documentary about buildings, Lancaster Television (Lancaster),24 andForemanin CIF format
were experimented. This test utilised an MPEG-4 encoder25 configured at a 25-fps frame rate and an IBBP group of
frames. The displacement fields were estimated using a 16-pixel search range and a 512-kbps rate control (TM5 algorithm).
Fig. 3, 4, and 5 depict the experimental results from P-type frames 4, 7 and 10 (cf. Subfig. 3, 4, and 5(a)) of the three test
sequences. Based on the parsed displacement vector fields ofthis video test set, the implemented algorithm generated the
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Figure 5. Reliability assessment and segmentation results from sequenceForemanat frames 4, 7 and 10 (This figure contains color
information best viewed by color printout.)

reliability measure arrays corresponding to the vector field sources (cf. Subfig. 3, 4, and 5(b)). Blocks of the absolute green
color represent the highest confident value, while the absolute red for the lowest one. In the segmentation (cf. Subfig. 3,4,
and 5(c)), a unique color illustrates a tracked region. No color is used at the blocks of unreliable displacement vectors.

It is observable that unreliable vectors influenced by new coded signals and/or estimation imprecision of the chosen
coding algorithm were efficiently identified (in a red-colorrange). These vectors were marked mostly around the arm
in Fig. 3(b), at the left border of the coach in Fig. 4(b), as well as on the left part of foreman’s face in Fig. 5(b). The
partitioning and tracking algorithm functioned well to extract the arm in Fig. 3(c), the coach in Fig. 4(c), and the foreman’s
face in Fig. 5(c) out of the background regions. However, toomany regions were detected at the coach and the sky regions
in Fig. 4, as a single affine model may not efficiently model complex region motion. The success in temporal association
or tracking is evident from the region color preservation atthe sequence level.

6. CONCLUSION

This paper presents a stochastic method for segmentation and tracking of the displacement field sequences from compressed
videos. Based on the stochastic motion coherency model, thedisplacement field sequence is analysed and partitioned
to multiple temporally associated, motion-semantic regions using the global motion based reliability analysis, partition
prediction, and stochastic relaxation. The visually convincing results were demonstrated from the standard sequences.
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